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We present analytical results for the leading �weak-localization� quantum interference correction to the
shot-noise power in a ballistic chaotic cavity coupled nonideally to two electron reservoirs via leads with an
arbitrary number of open scattering channels. The calculations were performed using two independent meth-
ods: S-matrix diagrammatic perturbation theory and quantum circuit theory. We obtained an unexpected
amplification-suppression transition as a function of both the number of open channels and the barriers’
transparencies. The effect results from a subtle combination of temporal and spatial quantum coherence in the
electron propagation through the system.
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I. INTRODUCTION

Quantum phase coherence has dramatic manifestations in
the transport properties of mesoscopic devices such as quan-
tum dots and quantum wires. The most common signatures
of quantum interference phenomena resulting from multiple
coherent wave scattering in the device are the weak-
localization �WL� correction and mesoscopic fluctuations.
Both effects can in principle be observed in any transport
observable, but the conductance and the shot-noise power are
the ones that have received most of the attention from both
the experimental and the theoretical literatures.

Being the leading quantum interference correction to the
average semiclassical value of a transport observable, the
WL term is a valuable source of information of the underly-
ing mechanisms of the quantum coherent dynamics in the
system. Its dependence on experimentally controllable pa-
rameters such as temperature, magnetic field, and barriers’
transparencies has been the subject of much current interest.1

The WL correction to the sample’s conductance is by far the
most studied and understood mesoscopic phenomena. Sev-
eral fundamental time scales, such as the Ehrenfest time, the
phase-coherence time, and the dwell time emerge naturally
from theoretical models of dephasing.2–4 Other important
time scales appear in crossover regimes5 between universal-
ity classes and depend on the relevant scattering processes,
such as the spin-orbit time and the magnetic time.

More recently, the WL correction to the shot-noise power
in a chaotic cavity with ideal contacts has been studied in the
crossover regime.6,7 In Ref. 6 a semiclassical trajectory ap-
proach is used to describe the orthogonal-unitary crossover
due to the breaking of time-reversal symmetry by an external
magnetic field. Employing random-matrix theory Béri and
Cserti7 extended this result to a very general class of cross-
over that includes simultaneously spin-orbit coupling and an
external magnetic field. A general consequence of the expres-
sions for the weak-localization correction to the shot-noise
power obtained by these authors is a change in sign or a
suppression-amplification transition as a function of the
crossover parameters.

For quantum dots in semiconductor heterostructures it is
also possible to experimentally control the transparencies of

the barriers by manipulating gate voltages. It is therefore also
important to understand how the WL signal depends on the
value of these contact parameters. In this paper we provide
such an analysis for the shot-noise power in systems belong-
ing to two pure Wigner-Dyson universality classes �orthogo-
nal and symplectic�. We find an unexpected change in sign in
the WL correction to the shot-noise power as a function of
both the barriers’ transparencies and the number of open
scattering channels. Surprisingly, the effect is completely in-
duced by the barriers and does not depend on the presence of
spin-orbit coupling inside the dot. Since the shot-noise power
is the second cumulant of the charge counting statistics8

�thus reflecting the time coherence of transmission events�
and the WL correction is a wave interference phenomenon
associated with spatial coherence, our effect is a conse-
quence of a subtle combination of time and spatial coherence
of electron propagation through the device.

Changes in sign in the WL correction in the absence of
spin-orbit scattering is a very unusual quantum interference
effect. Recently such an effect was predicted for the conduc-
tance of a multiterminal network of quasi-one-dimensional
diffusive wires.9 The effect was shown to have a geometrical
origin. More specifically, if T�,� is the transmission probabil-
ity to go from contact � to contact �, the WL correction was
shown to be proportional to a weighted average of the
Cooperon Pc over each bond ���� of the network �T��

����
�T��

cl

�l��
�����dxPc�x ,x�, where l�� is the length of the bond

���� and T��
cl is the classical transmission probability. For a

system with N wires plunged in the middle of a quasi-one-
dimensional conductor the WL correction to the transmission
across the conductor reads �T= 1

3 �−1+N /4�. A geometrically
induced change in sign occurs at N=4, indicating a
depletion-enhancement transition in the conductance caused
by multiple coherent backscattering in the network.

A chaotic quantum dot is an open electron cavity with the
form of a chaotic billiard. It is probably the simplest meso-
scopic device that exhibits nontrivial quantum transport phe-
nomena, such as weak-localization and universal mesoscopic
fluctuations. In spite of its simplicity, the theoretical models
that interrelate the observable quantum phenomena in this
system are far from trivial. The main technical challenge is
the development of an efficient scheme to remove the enor-

PHYSICAL REVIEW B 78, 235305 �2008�

1098-0121/2008/78�23�/235305�5� ©2008 The American Physical Society235305-1

http://dx.doi.org/10.1103/PhysRevB.78.235305


mous dynamic redundancy caused by the chaotic motion in-
side the dot and in this way derive an optimal theory, i.e., the
simplest mathematical representation of the relevant physical
information. In the universal regime, defined by a mean
dwell time much greater than both the ergodic time and the
Ehrenfest time, and neglecting interaction effects, the ran-
dom scattering matrix theory offers an essentially complete
description since it incorporates nonperturbatively both tem-
poral and spatial coherences. The description is however
nonoptimal due to the large number of random variables. An
optimal and quite powerful description is provided by Naz-
arov’s quantum circuit theory.10 The theory can describe per-
turbative effects such as the WL correction and universal
mesoscopic fluctuations, as was recently shown by Campag-
nano and Nazarov.11 An independent attempt to obtain an
optimal description intimately connected to quantum circuit
theory and including nonperturbative quantum fluctuations
has been pursued in Refs. 12–15. In Sec. II, we describe the
problem of full counting statistics �FCS� for charge transfer
through a quantum dot in the scattering matrix formalism.
The average shot-noise power, i.e., the second FCS cumu-
lant, is calculated using a diagrammatic perturbation theory
in inverse powers of the contact conductances between the
dot and the leads. Large values of contact conductances are
assumed so that Coulomb blockade effects are suppressed. In
Sec. III, we rephrase the problem in the language of the
supersymmetric nonlinear sigma model and quantum circuit
theory. This offers an independent perturbative scheme,
which we use to recalculate the dominant quantum correc-
tion �weak-localization term� of the average shot-noise
power. The final expression, obtained only for equivalent
channels, agrees with the general formula obtained in Sec. II.
A brief discussion of the physical implications of our for-
mula and conclusions is presented in Sec. IV.

II. SCATTERING MATRIX FORMALISM

Following Ref. 15, our starting point is the random scat-
tering matrix description of the cumulant generating function
of the FCS for charge transfer through a double-barrier cha-
otic quantum dot coupled to two leads, labeled as 1 and 2,
with N1 and N2 open scattering channels, respectively. The
FCS generating function is directly related to the following
integral transform:

�����	� � =� dS
����	� ,S�P����S� , �1�

where dS is the Haar measure over the appropriate unitary

group, P��S�� �det�1− S̄†S��−��N1+N2−1+2/�� is the Poisson ker-
nel and �� �1,2 ,4� is Dyson’s symmetry index. The scatter-
ing matrix and its average read as

S = 	r t�

t r�

, S̄ = 	r1 0

0 r2

 ,

where r ,r� and t , t� are the dot’s reflection and transmission
matrices, respectively, and rp=diag��1−Tp1 , . . . ,�1−TpNp

�
is the reflection matrix of barrier p, which is fully character-
ized by its transmission coefficients Tpn, with n=1, . . . ,Np.

The kernel of the integral transform is given by16


����	� ,S� = �
�=�

det	 1 − sin2�	0�
� /2�tt†

1 + sinh2�	1�
� /2�tt†
 , �2�

where 	0�
� 
	0+�	0�, with 	0�=	2��,4, and 	1�

� =	1
+�	1�, with 	1�=	3��,1. We have also defined the vector
	� 
�	0 ,	0� ,	1 ,	1��. The FCS cumulants are given by

ql+1 = lim

→1

	


2

d

d


l�
2I����	�

sin 	
�

cos�	/2�=


, l = 0,1, . . . ,

where I����	� is a quantity that plays the role of a pseudocur-
rent in quantum circuit theory. It is defined by

I����	� = − 2m�� ������	� �
�	0+

� �
	� =�	,	,i	,i	�

, �3�

in which m�=1+��,4. From a mathematical point of view the
problem is completely well defined. The average dimension-
less conductance and the average dimensionless shot-noise
power, for instance, are given by the first and second cumu-
lant of FCS, respectively, i.e., �g�=q1 and �p�=q2. The cal-
culation of the integral over the Haar measure, however, is a
task that is far from trivial. Our calculation of �p� is based on
a perturbative diagrammatic scheme for performing this in-
tegral devised by Brouwer and Beenakker.17

We start by writing the shot-noise power as

p = g − h , �4�

where the conductance, g=Tr�tt†�, and h
Tr��tt†�2� are lin-
ear statistics of transmission eigenvalues. Since the average
conductance can be found in Ref. 17, we only need to com-
pute �h� to obtain the average shot-noise power. It proves
convenient to write h in terms of the scattering matrix,

h = Tr��C1SC2S†�2� , �5�

where C1 and C2 are projection matrices onto leads 1 and 2,
with N1 and N2 open channels, respectively.17

Applying the diagrammatic rules to the average of Eq. �5�
in the semiclassical limit of large contact conductances, we
obtain a representation in terms of six distinct types of ladder
diagrams, associated with diffusion modes in the system �see
Fig. 1�. We remark that symmetry considerations on the to-
pology of the diagrams impose a counting factor of 2 when

FIG. 1. Ladder diagrams contributing to the average shot-noise
power. The maximally crossed diagrams that determine the weak-
localization correction are obtained by crossing arms in each
diagram.
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summing the diagrams of types 3 and 4. The sum of these six
diagrams yields the dominant contribution of the average of
h in the semiclassical limit,

�h� =
g1

4ḡ2 + 2g1
3ḡ1

2 + 2g1
2ḡ1

3 + g2ḡ1
4

�g1 + ḡ1�4 + O�1� , �6�

where gm=�n=1
N1 �T1n�m and ḡm=�n=1

N2 �T2n�m are the parameters
describing the contacts of the quantum dot to leads 1 and 2,
respectively. The contact conductances, for instance, are
given by g1 and ḡ1.

We now turn to the weak-localization correction. In the
diagrammatic analysis, it contains two types of contributions,
hWL=�h1+�h2. The first one, denoted by �h1, comes from
the U-cycles of Fig. 1 �see Ref. 17 for a definition� and can
be written as

�h1 = − 2�g1 + ḡ1�−5�g1
4ḡ2 + 2g1

3ḡ1
2 − g1

3ḡ1ḡ2 − g1g2ḡ1
3 + 2g1

2ḡ1
3

+ g2ḡ1
4� + O��g1 + ḡ1�−1� . �7�

The second contribution, denoted by �h2, comes from
maximally crossed or Cooperon’s diagrams. They are sys-
tematically obtained by crossing the arms of the six diagrams
of Fig. 1. Summing over the entire set of maximally crossed
diagrams we obtain

�h2 = − 2�g1 + ḡ1�−6�− g1
2ḡ1

3ḡ2 + 4g1
3ḡ1

2ḡ2 + 4g1
2ḡ1

3g2 + 3g1
4ḡ1ḡ2

− g1
3ḡ1

2g2 − 2g2ḡ1
5 + 2g1

5ḡ3 + 2ḡ1
5g3 − 4g1

4ḡ2
2 + 2g1ḡ1

3ḡ2g2

+ 2g1
3ḡ1g2ḡ2 − 4g1

2ḡ1
2g2ḡ2 − 2g1

5ḡ2 − 4g2
2ḡ1

4 + 3g1ḡ1
4g2

+ 2ḡ1
4g3g1 + 2g1

4ḡ3ḡ1 − 2g1
4ḡ1

2 − 4g1
3ḡ1

3 − 2g1
2ḡ1

4�

+ O��g1 + ḡ1�−1� . �8�

We are now in position to state our main result. Combin-
ing Eqs. �6�–�8� and using the results of Ref. 17 for the
average conductance, we obtain the following expression for
the average shot-noise power:

�p� = �g1 + ḡ1�−4�g1
4ḡ1 + g1

3ḡ1
2 − g1

4ḡ2 − ḡ1
4g2 + g1

2ḡ1
3 + g1ḡ1

4�

+ 	 2

�
− 1
�g1 + ḡ1�−6�− 3g2ḡ1

5 + 4g1
5ḡ3 + 4ḡ1

5g3 − 8g1
4ḡ2

2

− 3g1
5ḡ2 − 8g2

2ḡ1
4 + 4g1

3ḡ1g2ḡ2 + 4g1ḡ1
3ḡ2g2 − 8g1

2ḡ1
2g2ḡ2

− 3g1
2ḡ1

3ḡ2 + 3g1
3ḡ1

2ḡ2 + 3g1
2ḡ1

3g2 + 3g1
4ḡ1ḡ2 − 3g1

3ḡ1
2g2

+ 3g1ḡ1
4g2 + 4ḡ1

4g3g1 + 4g1
4ḡ3ḡ1� + O��g1 + ḡ1�−1� . �9�

The first term, denoted by pCL, is the dominant semiclas-
sical contribution and coincides with Whitney’s result3 in the
limit of vanishing Ehrenfest time. The second term, denoted
by pWL, is the weak-localization correction and constitutes
the central result of this paper. We remark that it applies to
all Wigner-Dyson ensembles where the symmetry index sat-
isfies �� �1,2 ,4�. In order to gain some insight into its
physical meaning, we shall derive the particular case of
equivalent channels, where Tpn=Tp for all n, in Sec. IV by
applying quantum circuit theory.

III. QUANTUM CIRCUIT THEORY

There is an alternative, much more intuitive, formulation
of the problem that is based on the following remarkable
exact transformation of color-flavor type:18

� dS
����	� ,S�P����S� =� dQe−S����Q,Q	̂�, �10�

in which the “gluon field” represented by the unitary matrix
S is replaced by a “meson field” represented by a superma-
trix Q, satisfying the constraint Q2=1. The action in flavor
space reads as S����Q ,Q	̂�=m��S1�Q ,Q	̂�+S2�Q ,Q0��,
where

Sp�Q,Q�� =
1

4�
n=1

Np

Str ln	1 −
Tpn

4
�Q − Q��2
 , �11�

in which Str denotes as the supertrace operation. The source
field Q	̂ is chosen to have the form,

Q	̂ = 	 0 e−i	̂

ei	̂ 0

 , �12�

where 	̂=diag�i	B ,	F�, and

	B 
 	 	1 	1�

	1� 	1

, 	F 
 	 	0 	0�

	0� 	0

 . �13�

We have also defined Q0=Q	̂=0. The advantage of the super-
matrix formulation is the natural reorganization of the semi-
classical expansion in terms of a well-controlled expansion
around the saddle point. The dominant contribution comes
from the saddle-point equation,15 which reproduces the
pseudocurrent conservation law of quantum circuit theory,10

I����	�� Isp�	�= I1�	−��= I2���, where

Ip�	� = �
n=1

Np 2Tpn tan�	/2�
1 + �1 − Tpn�tan2�	/2�

, p = 1,2. �14�

Going beyond the saddle-point contribution one obtains
quantum interference corrections so that the full expansion in
inverse powers of the classical conductance reads as I����	�
= Isp�	�+ IWL�	�+. . ., where IWL�	� denotes as the weak-
localization correction. For systems with unitary symmetry
��=2� and ideal contacts �Tpn=1� the entire expansion can
be explicitly calculated.15 In a recent insightful paper, Naz-
arov and Campagnano11 derived IWL�	� directly from quan-
tum circuit theory. Their expression is remarkably general
since it contains all types of crossovers between the Wigner-
Dyson symmetry classes. For the pure classes their result is
expected to coincide with the above supermatrix formula-
tion. In our notation it can be written as

IWL�	� =
2 − �

�

d

d	
ln

M+�	�
M−�	�

, �15�
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where M��	� are the eigenvalues of a finite element version
of the Cooperon and are given by

M+�	� = 2Isp�	��cot	��	� −
	

2

 − cot	��	� +

	

2

�

− 2� Isp� �	�
���	� + 1/2

− Isp�	�cot	��	� +
	

2

�

+ 2� Isp� �	�
���	� − 1/2

− Isp�	�cot	��	� −
	

2

� ,

M−�	� = 2Isp�	��cot	��	� −
	

2

 − cot	��	� +

	

2

� ,

where Isp� �	�
dIsp�	� /d	 and the intermediate phase func-
tion ��	� is obtained from the saddle-point equation written
in the form, Isp�	�= I1�	 /2+��= I2�	 /2−��. The main tech-
nical difficulty in obtaining explicit expressions for observ-
ables from Eq. �15� is the analytical control over the physical
root of the saddle-point equation, which for the case of
equivalent channels Tpn=Tp can be transformed into a poly-
nomial equation of fourth degree. In this case, the weak-
localization correction to the shot-noise power can be ob-
tained and for �=1; it reads as

pWL =
G1G2�G1 − G2��G1T2 + G2T1��3�G2

2 − G1
2� + 4�G1

2T2 − G2
2T1��

�G1 + G2�6 , �16�

which coincides with the second term of Eq. �9� if we set
�=1, gp=N1T1

p, ḡp=N2T2
p, and Gi=NiTi, where i=1,2. Note

that we recover the well-known result pWL=N1N2�N1

−N2�2 / �N1+N2�4 obtained by Beenakker19 in the case of
ideal contacts. In this case, the quantum correction is always
non-negative and vanishes for N1=N2. Our more general re-
sult �Eq. �9�� predicts a much richer behavior as we describe
in Sec. IV.

IV. DISCUSSION AND CONCLUSIONS

For the sake of clarity let us concentrate on the case of
equivalent channels. The results can be best understood
through diagrams in the planes �T1 ,T2� for fixed a
N2 /N1
and �a ,T2� for fixed T1. The main new physical effect is the
existence of regions in parameter space, denoted by �−� and
�+� in panels �2� and �4� of Fig. 2, where pWL�0 and pWL

�0, respectively. Consequently, the system exhibits a
barrier-induced suppression-amplification transition in the
quantum correction to the shot-noise power. We can also
define regions, denoted as �0�, �I�, and �II� in panels �1� and
�3� of Fig. 2 where pWL has, as a function of the remaining
variable, zero �0�, one �I�, or two �II� sign changes. The
shapes of the boundary lines separating these regions are
independent of the remaining variable. The most interesting
point in the diagrams is pc

WL= �3 /4,3 /4�. At pc
WL, pWL=0 for

all values of a. Therefore pc
WL separates two a-independent

regions in panel �1� of Fig. 2: one where pWL�0 for points
on the line �T ,T� with T�3 /4 and another where pWL�0
for points on the line �T ,T� with T�3 /4. Consequently, the
lower boundary lines between regions �+� and �−� shown in
panel �2� of Fig. 2 �both the full and the dashed line� are
located inside the region �II� of panel �1� of Fig. 2. Finally,
the linear suppression of pWL in the opaque limit, defined in
Ref. 3 as Ti→0 with Gi fixed, is an interesting feature of our
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FIG. 2. Diagrams showing the transition. �1� In regions �0�, �I�,
and �II� pWL has, respectively, zero, one, and two sign changes as
functions of a in the interval �0,1�; �2� Diagrams �T1 ,T2� separating
positive �+� and negative �−� regions for a=3 /10 �continuous lines�
and a=6 /10 �dashed lines�; �3� Diagram �a ,T2� separating regions
�I� and �II�, where pWL has one and two sign changes as functions
of T1, respectively; �4� Positive �+� and negative �−� regions in the
�a ,T2� plane for T1=3 /10 �continuous lines� and T1=5 /10 �dashed
lines�; �5� Plots of pWL showing the sign changes as a function of a
for points at each region in diagram �1�. �6� Plots of pWL showing
the sign changes as functions of T1 for each region in diagram �3�.
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result. A similar effect for the weak-localization correction to
the conductance has a nice physical explanation in the semi-
classical approach.3

We believe that the transitions predicted in this work
could become a useful tool to detect experimentally, in a
controlled way, the weak-localization correction to shot-
noise power in ballistic chaotic quantum dots. Experiments
with tunable barriers, such as the ones discussed in Refs. 20
and 21, are already able to detect small variations in the
electric current and in this way extract both the full counting

statistics and cumulants up to the fifth order. From a concep-
tual point of view, our result provides strong links intercon-
necting quantum circuit theory, the supersymmetric nonlin-
ear sigma model, the random scattering matrix approach, and
the trajectory-based semiclassical theory.
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